أنواع التصادمات

التصادم هو حدث يتم فيه نقل الزخم ، أو الطاقة الحركية من جسم إلى آخر ، والزخم (p) هو نتاج الكتلة والسرعة
(p = mv) ، الشاحنة الكبيرة التي تحشد 10000 كجم ، وتتحرك بسرعة 2 متر / ثانية ، لها نفس الزخم ، مثل السيارة المدمجة 1000 كجم ، وتتحرك بسرعة 20 مترًا / ثانية ، فكلاهما لديه ص = 20000 كجم م / ثانية.

والكمية الأخرى التي يمكن نقلها في التصادم هي الطاقة الحركية ، والطاقة الحركية هي الطاقة للحركة ، يتم تعريفها على أنها K = (1/2) m v^2 ، العلاقة بين الطاقة الحركية والكتلة خطية ، مما يعني أن كتلة السيارة مضاعفة لديها ضعف الطاقة الحركية ، فالعلاقة بين الطاقة الحركية والسرعة متساويه ومتسارعه ، مما يعني أنه كلما زادت سرعتك ، زادت الطاقة الحركية بشكل كبير. [1]

أنواع التصادمات بالفيزياء

وهناك نوعان عامان من التصادمات في الفيزياء هما :

  • التصادم المرن.
  • والتصادم غير المرن ، ويحدث التصادم غير المرن ، عندما يتصادم جسمان ، ولا يرتدان عن بعضهما البعض.

يتم الحفاظ على الزخم ، لأن الزخم الكلي لكلا الجسمين قبل وبعد الاصطدام هو نفسه ، ومع ذلك ، لا يتم الحفاظ على الطاقة الحركية ، ويتم تحويل بعض الطاقة الحركية إلى صوت ، وحرارة ، وتشوه للأجسام.

وتصادم السيارة عالي السرعة ، هو تصادم غير مرن ،  في المثال أعلاه ، إذا قمت بحساب زخم السيارات قبل الاصطدام ، وقمت بجمعها معًا ، فسيكون ذلك مساوياً للزخم بعد التصادم ، عندما تكون السيارتان عالقتين ، ومع ذلك  إذا حسبت الطاقة الحركية ، قبل وبعد الاصطدام ، فستجد أن بعضها تم تحويله إلى أشكال أخرى ، من الطاقة.

ويحدث الاصطدام المرن عندما (يرتد) الجسمان عندما يصطدمان ، والكرتان المطاطيتان هما مثال جيد على ذلك .

التصادم المرن

في التصادم المرن ، يتم الحفاظ على كل من الزخم والطاقة الحركية ، وتقريبا لا يتم فقدان أي طاقة ، بسبب الصوت أو الحرارة أو التشوه ، فتشوه الكرة المطاطية الأولى ، ولكن بعد ذلك ترتد بسرعة إلى شكلها السابق ، وتنقل كل الطاقة الحركية تقريبًا إلى الكرة الثانية.

كما يعمل مصد السيارة باستخدام هذا المبدأ لمنع الضرر ، في اصطدام منخفض السرعة ، تكون الطاقة الحركية صغيرة ، بما يكفي بحيث يمكن للمصد ، أن يتشوه ثم يرتد مرة أخرى ، وينقل كل الطاقة مباشرة إلى الحركة ، ولا يتم تحويل أي طاقة تقريبًا إلى حرارة ، أو ضوضاء أو تلف في جسم السيارة ، كما يحدث في التصادم غير المرن.

ومع ذلك ، غالبًا ما يتم تصنيع مصدات السيارات للانهيار ، فإذا كانت السرعة عالية بما يكفي ، ولا تستخدم فوائد التصادم المرن ، فالأساس المنطقي هو أنه إذا كنت ستصطدم بشيء بسرعة عالية ، فمن الأفضل السماح للطاقة الحركية بتفتيت المصد في تصادم غير مرن ، وذلك بدلاً من السماح للمصد بالاهتزاز ، عندما ترتد سيارتك في تصادم مرن ، وإن صنع مصداتهم بهذه الطريقة يفيد شركات السيارات: فهم يبيعونك مصدًا جديدًا ، ولا يمكنك مقاضاتهم بسبب الاصطدام.

فيزياء اصطدام السيارات

أثناء تحطم السيارة ، يتم نقل الطاقة من السيارة إلى أي شيء تصاب به ، سواء كانت مركبة أخرى ، أو جسمًا ثابتًا ، كما يمكن أن يؤدي نقل الطاقة هذا ، اعتمادًا على المتغيرات التي تغير حالات الحركة ، إلى إصابات وتلف السيارات والممتلكات ، والكائن الذي تم ضربه ، إما أن يمتص قوة الدفع عليه ، أو ربما ينقل تلك الطاقة مرة أخرى إلى السيارة التي ضربها ، كما يمكن أن يساعد التركيز على التمييز بين القوة ، والطاقة في تفسير الفيزياء المعنية.

القوة : الاصطدام بجدار

حوادث السيارات هي أمثلة واضحة على كيفية عمل قوانين نيوتن للحركة ، قانونه الأول للحركة ، المشار إليه أيضًا باسم قانون القصور الذاتي ، يؤكد أن الجسم المتحرك ، سيبقى في الحركة ما لم تعمل قوة خارجية عليه ، على العكس إذا كان الجسم في حالة استراحة ، فإنه سيبقى في حالة راحة ، حتى تعمل قوة غير متوازنة عليه.

فبالتفكير في موقف تصطدم فيه السيارة A ، بجدار ثابت غير قابل للكسر ، فيبدأ الوضع بالسيارة A تسير بسرعة (v) ، وعند الاصطدام بالجدار ، وتنتهي بسرعة ،  ويتم تعريف قوة هذا الموقف ، من خلال قانون نيوتن الثاني للحركة ، والذي يستخدم معادلة القوة يساوي تسارع الكتلة بمرات ، ففي هذه الحالة ، يكون التسارع (v – 0) / t  ، حيث  t هو أي وقت يستغرق السيارة A للتوقف.

وتمارس السيارة هذه القوة في اتجاه الجدار ، لكن الجدار ، الذي هو ثابت وغير قابل للكسر ، يمارس قوة متساوية على السيارة ، وفقًا لقانون نيوتن الثالث للحركة ، وهذه القوة المتساوية هي التي تجعل الأكورديون يرتفع أثناء التصادمات.

ومن المهم ملاحظة أن هذا نموذج مثالي ، حيث أن في حالة السيارة A ، إذا ارتطمت بالجدار وتوقفت على الفور ، فسيكون ذلك تصادمًا غير مرن تمامًا ، ونظرًا لأن الجدار لا ينكسر ، أو يتحرك على الإطلاق ، يجب أن تذهب القوة الكاملة للسيارة إلى الحائط في مكان ما.

إما أن يكون الجدار ضخمًا جدًا بحيث يتسارع ، أو يتحرك كمية غير محسوسة ، أو لا يتحرك على الإطلاق ، وفي هذه الحالة تعمل قوة التصادم على السيارة ، وعلى الكوكب بأكمله ، ومن الواضح أن هذا الأخير هو ضخم لدرجة أن التأثيرات لا تذكر. [2]

القوة : الاصطدام بسيارة

في حالة تصادم السيارة B مع السيارة C ، لدينا اعتبارات قوة مختلفة ، بافتراض أن السيارة B والسيارة C مرايا كاملة لبعضهما البعض (مرة أخرى ، هذا وضع مثالي للغاية) ، فإنهما سوف يتصادمان مع بعضهما البعض ، بنفس السرعة بالضبط ، ولكن في اتجاهات متعاكسة ، من الحفاظ على الزخم ، ونعلم أنه يجب أن يستريح كلاهما ، والكتلة هي نفسها ، وبالتالي فإن القوة التي تمر بها السيارة B والسيارة C متطابقة ، كما أنها مطابقة لتلك التي تعمل على السيارة،  في الحالة A في المثال السابق ، وهذا يفسر قوة التصادم ، ولكن هناك جزء ثان عن الطاقة داخل التصادم.

الطاقة

كما ذكرنا سابقًا القوة هي كمية متجهة ، بينما الطاقة الحركية هي كمية قياسية ، محسوبة بالصيغة K = 0.5 mv2 ، وفي الحالة الثانية أعلاه ، كل سيارة لديها طاقة حركية K مباشرة قبل الاصطدام ، وفي نهاية التصادم ، تكون كلتا السيارتين في حالة راحة ، وتبلغ الطاقة الحركية الإجمالية للنظام.

ونظرًا لأن هذه تصادمات غير مرنة ، لا يتم الحفاظ على الطاقة الحركية ، ولكن يتم الحفاظ على إجمالي الطاقة دائمًا ، لذلك يجب أن تتحول الطاقة الحركية (المفقودة) في التصادم إلى شكل آخر ، مثل الحرارة ، والصوت وما إلى ذلك.

ففي المثال الأول ، حيث تتحرك سيارة واحدة فقط ، تكون الطاقة المنبعثة أثناء التصادم هي K ، أما في المثال الثاني ، على الرغم من ذلك ، هناك سيارتان متحركتان ، لذا فإن الطاقة الإجمالية المنبعثة أثناء التصادم ، هي 2K ، لذا فإن الانهيار في الحالة B ، من الواضح أنه أكثر نشاطًا من الحالة A.

من السيارات إلى الجسيمات

وبالتفكير في الاختلافات الرئيسية بين الحالتين ، فعلى المستوى الكمي للجسيمات ، يمكن للطاقة والتبادل بين المواد بشكل أساسي ، أما فيزياء اصطدام السيارة لن تنبعث منها سيارة جديدة تمامًا مهما كانت نشطة ، بل سوف تواجه السيارة نفس القوة بالضبط ، في كلتا الحالتين ، والقوة الوحيدة التي تعمل على السيارة ، هي التباطؤ المفاجئ من سرعة v إلى 0 في فترة زمنية وجيزة ، بسبب الاصطدام بأداة أخرى.

ومع ذلك عند عرض النظام الكلي ، فإن التصادم في الوضع مع سيارتين ، يطلق طاقة مضاعفة مثل التصادم مع الجدار ، فإنه أعلى ، وأكثر سخونة ، وربما أكثر فوضى ، وفي جميع الاحتمالات ، انصهرت السيارات مع بعضها البعض ، وتطير القطع في اتجاهات عشوائية.

وهذا هو السبب في أن الفيزيائيين يسرعون الجسيمات في المصادم ، لدراسة الفيزياء عالية الطاقة ، وإن عملية اصطدام شعاعين من الجسيمات مفيد ، لأنه في تصادمات الجسيمات ، لا تهتم حقًا بقوة الجسيمات (التي لا تقيسها حقًا) ، فأنت تهتم بدلاً من ذلك بالطاقة الجسيمات. [3]

كما يسرع مسرع الجسيمات الجسيمات ، ولكنه يفعل ذلك مع تحديد السرعة الحقيقية للغاية ، التي تمليها سرعة حاجز الضوء من نظرية النسبية لأينشتاين ، وللضغط على بعض الطاقة الإضافية للخروج من التصادمات ، بدلاً من اصطدام شعاع من جزيئات سرعة قريبة من الجسم ، بجسم ثابت ، ومن الأفضل اصطدامه بشعاع آخر من جزيئات سرعة قريبة ، من السير في الاتجاه المعاكس.

فمن وجهة نظر الجسيم ، فإنها لا (تتحطم أكثر من ذلك بكثير) ، ولكن عندما يتصادم الجسيمان ، يتم إطلاق المزيد من الطاقة ، في تصادمات الجسيمات ، يمكن أن تأخذ هذه الطاقة شكل جسيمات أخرى ، وكلما سحب المزيد من الطاقة من الاصطدام ، كلما كانت الجزيئات أكثر غرابة.

Via المرسال https://www.almrsal.com

تعليقات

المشاركات الشائعة من هذه المدونة

أفضل ثلاثة تطبيقات لإضافة فقاعات الإشعارات بأشكال مختلفة لهاتفك

أسبوع جديد ومتجر جوجل بلاي يتحصل على تطبيقات رائعة جديدة لتجربتها على هاتفك

احلى 10 صور مناظر طبيعية في عالمنا العربي